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Practical problems of dynamic similarity criteria
in fluid–solid interaction at different fluid–solid

relative motions
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Abstract: The work concerns dynamic similarity criteria of various phenomena occurring in hydraulics and
fluid dynamics originally derived from ratios of forces and forces moments affecting these phenomena. The
base of dynamic similarity criteria formulations and considerations is A. Flaga’s method and procedure
for determining dynamic similarity criteria in different issues of fluid–solid interactions i.e. at different
fluid–solid relative motions. The paper concerns the determination and analysis of dynamic similarity criteria
for various practical problems encountered mainly in hydraulics and fluid dynamics at steady, smooth fluid
onflow in front of a solid. Moreover, the cases of mechanically induced vibrations of a body in a stationary
fluid moving with constant velocity in front of the body have been presented. Assuming authorial method
and procedure for determining dynamic similarity criteria, its have been presented and analysed in the paper
both well known similarity numbers obtained in another way (e.g. from dimensional analysis or differential
equations for particular problems – as Reynolds, Froude, Euler, Cauchy, Strouhal, Mach numbers) – as well
as several new similarity numbers encountered in different fluid solid interaction problems (e.g. new forces
and moments coefficients encountered in problems of vibrating solid bodies in fluids).
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1. Introduction

The paper concerns the determination and analysis of dynamic similarity criteria for various
practical problems encountered mainly in hydraulics and fluid dynamics at steady, smooth
fluid onflow in front of a solid.

Moreover, the cases of mechanically induced vibrations of a body in a stationary fluid
moving with constant velocity in front of the body have been presented.

Dynamic similarity criteria have been originally derived from ratios of forces and forces
moments affecting considered phenomena. The base of dynamic similarity criteria formulations
and considerations is A. Flaga’s method and procedure for determining dynamic similarity crite-
ria in different issues of fluid–solid interactions i.e. at different fluid–solid relative motions [1].

Assuming consequently these method and procedure, a comprehensive statement of
dynamic similarity criteria in fluid-body interaction with various relative motions of body and
fluid have been achieved.

There are many different ways of formulating and defining similarity criteria in engineering.
Dimensional analysis and theory of similarity of physical phenomena occurring in various
issues of engineering, can be found e.g. in the following books, monographs and publications
devoted to:

– Hydro-mechanics, hydraulics and fluid dynamics i.e. e.g.:
• similarity, dimensional analysis and critical numbers at different fluid–solid relative
motions [2],

• similarity criteria for fluid flows in conduits, fluid flows in channels, floating objects,
in turbomachinery [3],

• similarity criteria and modelling in fluid mechanics [4],
• similarity and dimensional analysis in mechanics [5];

– Wind engineering and aerodynamics of buildings and structures i.e., e.g.:
• similarity numbers important in problems of wind action on building structures
encountered in their design [6],

• original similarity criteria elaborated and analyzed by Flaga A. and Flaga et al. for
different special issues e.g.: wind vortex-induced excitation and vibration of slender
structures [7]; resistant of freight railway vehicles to roll-over in strong winds [8];
linear building objects at aerodynamic and gravitational actions [9]; wind tunnel model
tests of two free-standing lighting protection masts [10]; wind tunnel model tests of
wind action on the chimney with grid-type curtain structure [11]; sectional model of
power line free-cable bundlet conductors at their aeroelastic vibrations [12]; relation
between shape and phenomenon of flutter of bridge deck-line bluff bodies [13],

• similarity criteria in aeroelastic model tests of flutter phenomenon for cable-stayed
bridges [14] and suspension bridges [15],

• similarity methods in engineering dynamics: theory and practice of scale mod-
elling [16];

– Different issues of structural mechanics, engineering dynamics, thermomechanics,
aircrfat flowing qualities i.e., e.g.:
• problems of scalling, self-similarity and intermediate asymptotes [17],
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• hull girder ultimate strength assessment based on experimental results and the
dimensional theory which maintains the first-order similarity between the model and
real structures. [18],

• design of scaled down model for structural vibration analysis of a tower crane mast by
using similitude theory as well as numerical modal analyses for prototype and two
scaled models [19],

• dimensional and similitude analysis of stiffened panels under longitudinal compression
considering buckling behaviours [20],

• similarity criteria for thin-walled cylinders subjected to coupled thermo-mechanical
loads including thermo-elastoplastic failure behaviors predicted by numerical model
validated by experiments [21],

• flying qualities criteria for scaled-model aircraft based on similarity theory taking
into account relations between configuration parameters, control law parameters, and
flight condition parameters [22];

– Environmental engineering i.e. e.g.:
• environmental effects on buildings, structures and people: actions, influences, interac-
tions, discomfort [23],

• similarity criteria and problems of their fulfilment in different issues of environmental
engineering [24];

– Wind turbines i.e., e.g.:
• original similarity criteria for authorial models of different types of vertical axis and
horizontal axis wind rotors [25],

• modelling and the performance of different wind turbines, e.g. diffuser augmented
wind turbine, stepped blade wind turbine, vertical axis wind turbine [26], cross-flow
wind turbine above windbreak fence [27],

• modelling and experimental investigations of the performance of a cross-flow wind
turbine with and without diffuser [28];

– Snow engineering i.e., e.g.:
• snow load distributions on different stadium roofs [29],
• aerodynamic and aeroelastic similarity criteria for wind tunnel model tests of overhead
power lines in triangular configuration under different icing conditions [30],

• similarity criteria for wind tunnel model tests of snow precipitation and snow
redistribution on rooftops [31], terraces and in the vicinity of high rise buildings [32].

A dimensional analysis can be carried out e.g. in relation to general functional relationships
describing the phenomenon [33,34]. After carrying out dimensional analysis on these functional
relationships, in obtained dimensionless functional relationships appear set of nondimensional
numbers – being monomials created from main dimension or/and dimensional quantities (i.e.
variables and parameters) characterizing this phenomenon – which constitute the respective
similarity criteria.

A dimensional analysis can also be carried out by considering the ratios of forces or
moments of forces describing a given dynamic problem [1]. Because the dimensions of such
quantities are similar, hence their ratios are dimensionless and as such ones constitute specific
criteria/numbers of dynamic similarity of the analyzed issues. That is what this work is about.
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2. The ratio of global inertia force to global viscous force for
fluid flows and flows past objects – Reynolds number Re

In practical applications of fluid flows or flows past a solid body in a space domain of
characteristic dimension D f , there are several situations when global inertia and viscous forces
are the most important. In such cases, the velocity field and the pressure field in this domain
are strictly dependent on the ratio of the global inertia force to the global viscous force. Let us
consider several examples.

In the flow of a fluid through a completely filled pipe, gravity does not affect the flow
pattern. It is also obvious that capillarity is of no practical importance, and hence the significant
forces are inertia and fluid friction due to viscosity. The same is true for an airplane traveling
at speeds below the one at which air compressibility is appreciable. Similarly, for a submarine
submerged deep enough so that it does not produce waves on the surface, the only forces
involved are those of friction and inertia.

Considering the ratio of inertia forces to viscous forces, the parameter obtained is called
the Reynolds number Re in honour of Osborne Reynolds, who presented it in a publication of
his experimental work in 1882 [4].

The same criterial number was obtained ten years later by Lord Rayleigh, who developed
the theory of dynamic similarity [5]. The ratio of these two forces is:

(2.1) F∗i f
v f
=

Fif

Fv f
, Re =

ρ fV2
f D2

f

µ fVf D f
=
ρ fVf D f

µ f
=

Vf D f

νf

νf = µ f /ρ f – kinematic viscosity coefficient; , – sign indicating that the respective relation-
ships are equal or equivalent with regard to the dimensions.

For any consistent system of units, Re is a dimensionless number. The linear dimension
D f may be any length that is significant in the flow pattern. Thus, for a pipe completely filled,
it might be either the diameter or the radius (e.g. hydraulics radius), and the numerical value of
Re will vary accordingly.

If two systems, such as a prototype and its model (e.g. two pipelines with different fluids),
are to be dynamically equivalent so far as inertia and viscous friction are concerned, they must
both have the same value of Re. For the same fluid in both cases, the equation shows that a high
velocity must be used with a model of small linear dimensions. It is also possible to compare
the action of fluids of very different viscosities provided only that D f and Vf are chosen so as
to give the same value of Re.

Because surface pressures acting on a solid body immersed in a fluid depend on the Re
number, aerodynamic or hydrodynamic forces and moments resulting from it are also Reynolds
number dependent.

In the case of flow past a solid body of a characteristic dimension Ds , it is usually assumed
that D f = Ds = D.

If the Reynolds numbers of a prototype and its model are the same, the expressions for the
scales of velocity kV , time kt , acceleration ka, force kF and pressure kp should be as follows:

(2.2) Re =
DMVM

νM
=

DPVP

νP
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(2.3) kV =
VP

VM
=

DMνP
DPνM

=
kν
kD

(2.4) kt =
kD
kV
=

k2
D

kν

(2.5) ka =
kV
kt
=

kν
k3
D

(2.6) kF = kρk2
V k2

D = kρk2
ν

(2.7) kp = kF k−2
D = kρk2

ν k−2
D

Illustrative example.
A rigid, axially symmetrical body of length Dp = 3.0 m is to be towed deep under water

of temperature 15◦ with velocity Vp = 4 m·s−1. In order to determine the force required for
towing, a model of length DM = 0.6 m has been created and tested in a wind tunnel at air
velocity 20 m/s and temperature 15◦. The absolute viscosity of water in such conditions is
62.5 times greater than the viscosity of air.

The air drag force equal to 100 N has been determined on the basis of the tests in the wind
tunnel.

The adequate similarity criterion in the analysed case is the Reynolds criterion.
The model has been executed in the scale: kD = 3.0/0.6 = 5. The velocity and absolute

viscosity scales have also been determined: kV = 4/20 = 0.2; kµ = 62.5. Since the relation
ν = µ/ρ results in kv = kµ/kρ, the condition ReP = ReM may be satisfied by adequate
selection of viscosity scale kv =

vP

vM
. This quantity may be influenced by changing air pressure

in model tests. Thus the necessity to use a pressurised wind tunnel becomes evident. Let us
first calculate the required air pressure in the tunnel.

The equality of Reynolds numbers results in the following dependency for scales of relevant
quantities:

kρkV kD
kµ

= 1→ kρ =
kµ

kV kD
=

62.5
0.2 · 5

= 62.5

Given the water density: ρP = 1000 kg/m3, the required air density is:

ρM =
ρP
kρ
=

1000
62.5

= 16 kg ·m−3

In temperature equal to 15◦, the same air density will be obtained under the pressure of
1.2 MPa. Hence, the model should be tested in a pressurised wind tunnel under precisely this
pressure.

We use formula (2.6) to calculate the scale of forces:

kF = kρk2
V k2

D = 62.5 · 0.22 · 52 = 62.5

Finally, we arrive at the conclusion that towing the object under water requires force:

FP = kFFM = 62.5 · 100 = 6250 N = 6.25 kN
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3. The ratio of global inertia force to global gravity force –
Froude number Fr

A typical phenomenon related to the action of gravity is creation of waves on the free
surface of a fluid. They are the source of wave resistance which meets each body sliding on
this surface or floating partially immersed. Obviously, in both cases, viscous resistance also
has its role in the total resistance.

Considering global inertia and gravity forces alone, a ratio is obtained called a Froude
number Fr in honour of William Froude, who experimented with flat plates towed lengthwise
through water in order to estimate the resistance of ships due to wave action [4]. The ratio of
global inertia force to gravity force is:

(3.1) Fi f
gf =

Fif

Fgf
, Fr =

ρ fV2
relD

2
f

gρ f D3
f

=
V2
rel

gD f
; Vrel =


Vs

Vt

Vs − Vt

In this case, the characteristic dimension D f is usually taken as a reservoir depth Dd or
a body dimension Ds .

Although it is sometimes defined as the Froude number, it is more common to use the
square root so as to have Vrel in the first power, as in the Reynolds number. Thus the Froude
number is:

(3.2) Fr =
Vrel√
gD f

Systems involving gravity and inertia forces are [4]: the wave action induced by a ship, the
flow of water in open channels, the forces of a stream on a bridge pier, the flow over a spillway,
the flow of a stream from an opening, and other cases where gravity is a dominant factor.

A comparison of relationships (2.1) and (3.2) shows that the two cannot be satisfied at
the same time with the fluid of the same viscosity, since one requires that the velocity vary
inversely as D f , while the other requires it to vary directly as

√
D f . In this sense, the Reynolds

and Froude criteria must be deemed mutually contradictory. If both friction and gravity are
involved, it is necessary to decide which of the two factors is more important or more useful.
In the case of a ship [4], towing of a model will give the total resistance, from which must
be subtracted the empirically computed skin friction in order to determine the wave-making
resistance, and the latter may be smaller than the former. But for the same Froude number, the
wave-making resistance of the full-size ship may be determined from this result. A computed
skin friction for the ship is then to be added to this value to give the total ship resistance.

If we need to find the resistance of a ship to be designed, we may also proceed in the
following way: we may determine it on the grounds of model tests performed at relevant
velocity VFr, and the correction accommodating the influence of viscosity is then estimated by
extrapolation of results obtained with several models in various scales.

Transferring the results of measurements obtained with a model onto the object, with the
Froude number preserved, we use the following formulas for scales:
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– of velocity

(3.3) kV =
√

kD

– time (e.g. wave period)

(3.4) kt = kDk−1
V =

√
kD

– forces

(3.5) kP = kρk2
V k2

D = kρk3
D

In the flow of water in open channels [5], fluid friction is a factor, as well as gravity
and inertia, and, apparently, we face the same difficulty here. However, for flow in an open
channel there is usually fully developed turbulence, so that the hydraulic friction loss is exactly
proportional to V2

f , as will be shown later. Thus, fluid friction in open channels is independent
of the Reynolds number, with rare exceptions, and, therefore, it is a function of the Froude
number alone.

The only way to satisfy Eqs. (2.1) and (3.2) for both the prototype and its model is to use
fluids of very different viscosities in the two cases. Sometimes this can be done, but often it is
either impractical or impossible.

For the computation of Fr, the length D must be some linear dimension that is significant
in the flow pattern. For a ship, it is commonly taken as the length at the waterline. For an open
channel, it is taken as the depth of flow.

Illustrative example (comp. [5]).
A 1:50 model of a boat has a wave resistance of 0.02 when operating at 1.0 m/s. Let us

determine the corresponding prototype wave resistance, the engine power requirement for the
prototype and the velocity to which this test corresponds in the prototype.

Gravity and inertia forces predominate; hence the Froude criterion is applicable:

FrP = FrM →
(

V
√
gD

)
P

=

(
V
√
gD

)
M

→
V2
P

DP
=

V2
M

DM

Thus:
V2
P

V2
M

= k2
V =

DP

DM
= kD = 50

Since:
kF = kρk2

V k2
D = k3

D

therefore:
FP = k3

DFM = 503 · 0.02 = 2500 N = 2.5 kN

VP =
√

kD · VM =
√

50 · 1 = 7.1 m/s

PP = FP · VP = 2.5 · 7.1 = 17.75 kNm/s = 17.75 kW
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4. The ratio of global wave resistance force for a floating
body (e.g. ship) to global fluid inertia force

Let us consider the problem of wave resistance of a body moving on the surface of
a wavy fluid which otherwise remains stationary. Let the body of characteristic dimension Ds

move with velocity Vs , whereas the surface wave running towards the body has the following
parameters: Vw – wave velocity; Aw – wave amplitude; λw – wave length.

Let us define the similarity number resulting in this case from the relation of the global
wave resistance force Fw to the global fluid inertia force Fif:

(4.1) Fw
if =

Fw

Fif
, πwif =

Awλ
−1
w ρ fV2

wD2
s

ρ fV2
s D2

s

=
Aw

λw
·

(
Vw

Vs

)2

It may be seen from the above relations that the characteristic numbers here are the
following numbers: Aw/λw and Vw/Vs .

5. The ratio of the solid/particle local surface pressure forces
to the fluid local inertia forces – Euler number Eu,

pressure coefficient Cp

A dimensionless quantity related to the ratio of the local surface pressure forces F∆po to
the local inertia forces Fif is known as the Euler number Eu. It is expressed in a variety of ways,
one form being:

(5.1) F∆poif =
F∆po
Fif
, Eu =

∆pod2

ρ fV2
f

d2
=
∆po
ρ fV2

f

where: d = df = ds = dp .
In aerodynamics and hydrodynamics of various engineering objects, the Eu number is

frequently replaced by the so-called pressure coefficient Cp , also dimensionless, defined in the
following way:

(5.2) Cp =
∆po

1
2
ρ fV2

f

=
∆po
qf

where: qf =
1
2
ρ fV2

f – so-called stream / wind velocity pressure or dynamic pressure.
Both Eu and Cp numbers are important criteria of dynamic similarity, but mostly in

incompressible flow, because pressure and density are treated here as independent parameters.
Both these numbers depend primarily on the Re number.
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In dynamics of gases – when a gas flow is accompanied by small pressure changes – it is
more customary to use the so-called pressure coefficient Cp defined in the following way:

(5.3) Cp =
∆p f

1
2
ρV2

f

where: ρ signifies average density within a pressure range
(
p f ,−∆p f ; p f + ∆p f

)
.

If only pressure and inertia influence the flow, the Euler number for any boundary form
will remain constant. However, if other parameters (viscosity, compressibility, gravity etc.)
cause the flow pattern to change, Eu will also change.

6. The ratio of local surface pressure forces to local surface
viscosity forces

In this case, the similarity number takes the form:

(6.1) F∆povo =
F∆po
Fvo

,
∆pod2

o

µ fVf do
=
∆podo
µ fVf

=

Cp ·
1
2
ρ fV2

f do

µ f sVf
=

1
2

Cp · Re

Since the values of the pressure coefficient are numbers of the order of 1, the above
relation indicates that local viscosity forces for Reynolds numbers greater than 10 (definite
majority of cases in applied aerodynamics and hydrodynamics) are generally negligibly small
in comparison to local surface pressure forces. The exception are very slow flows past bodies
of small dimensions (e.g. material particles or microparticles).

For a solid body moving at velocity Vs in a reservoir of stationary fluid, Vf should be
replaced by Vs in the above relation.

7. The ratios of the solid/particle global surface pressure
forces and moments to the fluid global inertia forces
and moments – forces and moments aerodynamic/

hydrodynamic coefficients Coj and Cmoj

– Aerodynamic or hydrodynamic forces coefficients:

(7.1) F∆pojif =
F∆poj
Fif
,
∆∗po · C

∗
ojD

2
o

ρ fV2
f

D2
o

= 2C∗pC∗oj = C∗∗oj
(
Re,

(
Ǧ

))
where:

(
Ǧ

)
– a set of dimensionless geometrical parameters characterising the geometry

of the solid body/material particle.
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In practical applications, the above relation is rewritten to the following form:

(7.2) F∆poj =
1
2
ρ fV2

f D2
oCoj; Coj = Coj

(
Re,

(
Ǧ

))
where: Coj – aerodynamic / hydrodynamic coefficients of the body / particle forces: Cx –
resistance coefficient, Cy , Cz – coefficients of side and vertical forces.

– Aerodynamic or hydrodynamic moments coefficients:

M∆pojif =
M∆poj
Mif

,
∆∗po · C

∗
mojD

3
o

ρ fV2
f

D3
o

= 2C∗pC∗moj = C∗∗moj
(
Re,

(
Ǧ

))
(7.3)

M∆poj =
1
2
ρ fV2

f D3
oCmoj; Cmoj = Cmoj

(
Re,

(
Ǧ

))
(7.4)

where: Cmoj – aerodynamic / hydrodynamic coefficients of the body / particle moments:
Cmx – rotation moment coefficient; Cmy – pitch moment coefficient; Cmz – yaw moment
coefficient.

8. The ratios of the solid/particle global surface roughness/
friction forces and moments to the fluid global inertia

forces and moments – aerodynamic/hydrodynamic forces
and moments coefficients Croj and Cmroj

of surface roughness/friction
The surface roughness of a solid may significantly influence the values of aerody-

namic/hydrodynamic forces and moments exerted on the solid by fluid. In such case, other
characteristic numbers related to the solid’s surface roughness must also be taken into account
alongside the Reynolds number, e.g. defined as:

– Forces surface roughness/friction coefficients:

Froj
if =

Froj

Fif
,
µ∗ro · ∆

∗
po · C

∗
rojD

2
o

ρ fV2
f

D2
o

= 2Cpµ
∗
roC
∗
roj = C∗∗roj

(
Re,

(
Ǧ

))
(8.1)

Froj =
1
2
ρV2

f D2
oCroj; Croj = Croj

(
Re,

(
Ǧ

))
(8.2)

where: Croj – forces surface roughness coefficients of a solid/particle;
– Moments surface roughness/friction coefficients:

Mroj
if =

Mroj

Mif
,
µ∗ro · ∆

∗
po · C

∗
mrojD

3
o

ρ fV2
f

D3
o

= 2C∗pµ
∗
roC
∗
mroj = C∗∗mroj

(
Re,

(
Ǧ

))
(8.3)

Mroj =
1
2
ρV2

f D3
oCmroj; Cmroj = Cmroj

(
Re,

(
Ǧ

))
(8.4)

where: Cmroj surface roughness / friction moments coefficients of a solid / particle.



PRACTICAL PROBLEMS OF DYNAMIC SIMILARITY CRITERIA IN FLUID SOLID . . . 107

In the case of a moving solid body in a reservoir of otherwise stationary fluid, fluid velocity
Vf should be replaced by the solid/particle velocity Vo.

The roughness of a model should be scaled down in the same ratio as the other linear
dimensions, which means that a small model should have surfaces that are much smoother
than those in its prototype. However, this requirement imposes a limit on the scale that can be
used if true geometric similarity is to be had. Yet, in the case of a river model with a vertical
scale larger than the horizontal scale, it may be necessary to make the model surface rough in
order to simulate the flow conditions in the actual stream [5]. As any distorted model lacks the
proper similitude, no simple rule can be given for this; the roughness should be determined by
trial and error until the flow conditions are judged to be typical of those in the prototype.

9. The ratio of local inertia forces to local elastic forces
of fluid – Cauchy number Ca, Mach number Ma

Where compressibility of a fluid is important, it is necessary to consider the ratio of the
fluid local inertia forces Fif to the fluid local elastic forces Fef, called the Cauchy number Ca.

Thereby:

(9.1) F if
ef =

Fif

Fef
, Ca =

ρ fV2
f d2

f

K f d2
f

=
ρ fV2

f

K f

Taking into account that the acoustic wave velocity Cf (or celerity) in the medium in
question is:

(9.2) cf =

√
K f

ρ f

The Cauchy number can also be obtained by:

(9.3) Ca =
V2
f

c2
f

=

(
Vf

cf

)2
= Ma2

where: Ma – the so-called Mach number, named in honour of the Austrian scientist Mach.
If Ma is less than 1, the flow is called subsonic; if it is equal to 1, the flow is sonic; if it is

greater than 1, the flow is called supersonic; and for extremely high values of Ma the flow is
called hypersonic.

It is possible to satisfy the Mach and Reynolds criteria simultaneously in two air flows of
the same temperature T . Hence, it is possible to satisfy two equations:

(9.4)
kV
kc
= 1,

kDkV
kν

= 1 for kT = 1
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Given the fact that the kinematic viscosity scale kν = kµ/kρ, having eliminated kV , we
obtain the following from formula (9.4):

(9.5)
kρkDkc

kµ
= 1

Dynamic viscosity of fluids is strongly dependent on temperature, with proportionality
µ ∼ T valid for air, so kµ = kT . The relevant dependency for sound velocity takes the form
c ∼
√

T , so kc =
√

kT . Substituting these relationships in (9.4) gives kρkD/
√

kT = 1, or – for
kT = 1:

(9.6) kρkD = 1

The non-contradictory character of the Mach and Reynolds criteria for two air flows of the
same temperature has thus been demonstrated. In laboratory practice, the air density in a model
flow, and thus the density scale kρ, may be altered within a fairly large range by changing
pressure p. Therefore, aerodynamic tests are then performed in pressurised tunnels.

For example [5], when modelling a subsonic airplane in a wind tunnel, it is commonly
necessary to conduct the test under high pressure in order to satisfy the Reynolds criterion
without introducing compressibility effects. Suppose e.g. that kD = DP/DM = 20. If viscosity
µ and density ρ of the air were the same in the model and prototype, then to satisfy Reynolds’
criterion, VM = 20VP . For an airplane operating at normal speed, this would make the model
Mach number much greater than one, and compressibility effects would invalidate the behaviour
of the model. If, however, the test were conducted under the pressure of 20 atm with identical
model and prototype temperatures, ρM = 20ρP and µM ≈ µP since viscosity of air changes
very little with pressure (or density). In this case, the model should be operated at a velocity
equal to that of the prototype in order for the Reynolds numbers to be the same.

On the other hand, for small velocities of gas flow (approximately for Ma < 0.3), the
similarity of pressure fields is obtained by satisfying the Euler criterion.

10. Ratios of global forces and characteristic numbers
resulting therefrom in the case of moderately fast

or fast rising or falling of solid bodies
or material particles immersed in a stationary fluid

The decisive factors in the considered case are the following: the body/particles weight
forces Fgo, the buoyant forces exerted by fluid on the body/particle Fbo and the fluid inertia
forces Fif. Given the above, we may introduce other characteristic numbers defined as follows:

(10.1) Fgb
if =

Fgb

Fif
,


(
ρo − ρ f

)
gD3

o

ρ fV2
o D2

o

=
∆ρ

ρ f
·
gDo

V2
o(

ρo − ρ f
)

V2
t D2

o

ρ fV2
o D2

o

=
∆ρ

ρ f
·

(
Vt

Vo

)2
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Three new characteristic numbers have appeared in the above relations:
– dimensionless parameter of mass

(10.2) πρ =
∆ρ

ρ f

– dimensionless parameter of velocity

(10.3) V t
o =

Vt

Vo

– Froude’s number (or its reverse) referred to the body / particle

(10.4) Fro =
Vo
√
gDo

If we assume the characteristic velocity Vo as the terminal velocity, then V t
o = 1, and

(10.5) Fro = Frt =
Vt
√
gDo

11. Ratios of forces and characteristic numbers resulting
therefrom in cases of solid bodies vibrating in fluids

Let us consider this problem using the example of a solid body translational-rotational
vibrations of three degrees of freedom: translational ξ, ζ , and rotational ε, immersed first in
a stationary and then in a moving fluid. The adopted model of the vibrating body is illustrated
in Fig. 1. It is an elastically and viscously supported rigid body. We assume that the excitation
of the system has its static (mean) components – e.g. resulting from gravitation – and dynamic
(fluctuating) components. We shall consider solely the dynamic components of excitation, the
ones that generate vibrations of the system around its static balance position.

Fig. 1. A mass-spring-dashpot system in a flowing fluid
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11.1. The case of induced vibrations of a solid body in a stationary fluid
(outside the fluid-body contact area) – Vf = 0

The following sets of components of global forces and moments must be taken into account
in the considered case:

– the ones related to the elastic properties of the body supports

(11.1) (Fes) = (Fkx, Fkz, Mkε)

– the ones related to the damping (viscous) properties of the body supports

(11.2) (Fds) =
(
Fµx, Fµz, Mµε

)
– the ones related to the damping (viscous) properties of the fluid surrounding the body at
their relative motion

(11.3)
(
Fdsf

)
=

(
Fµx f , Fµz f , Mµε f

)
It is assumed that the resultant forces and the viscous damping moment of vibrations are as

follows:

(11.4) (FdΣ) =
(
Fµx + Fµx f ; Fµz + Fµz f ; Mµε + Mµε f

)
– the ones related to the body inertia

(11.5) (Fis) = (Fix, Fiz, Miε)

– the ones related to the added fluid mass

(11.6)
(
Fif

)
=

(
Fix f , Fiz f , Miε f

)
It is assumed that the resultant forces and the body inertia forces moment are as follows:

(11.7) (FiΣ) =
(
Fix + Fix f ; Fiz + Fiz f ; Miε + Miε f

)
– the ones related to the induction of the system vibrations

(11.8) (Fa) = (Fx, Fz, M)

while:

Fx = Fx (t) = Fox F̌x (t; (Gx)) = Fox F̌∗x
(
ť;

(
Ǧx

))
(11.9)

Fz = Fz (t) = Foz F̌z (t; (Gz)) = Foz F̌∗z
(
ť;

(
Ǧz

))
(11.10)

M = M (t) = MoM̌ (t; (Gε)) = MoM̌∗
(
ť;

(
Ǧε

))
(11.11)
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where: Fox , Foz , Mo – excitation amplitudes (or other characteristic dimensional quantities
of excitation); t – time; ť =

Vz t
B

– dimensionless time; (Gx), (Gz), (Gε);
(
Ǧx

)
,
(
Ǧz

)
,
(
Ǧε

)
– dimensional and dimensionless sets of excitation parameters; F̌∗x (. . .), F̌∗z (. . .), M̌∗ (. . .) –
dimensionless functions of dimensionless time and dimensionless excitation parameters which
constitute specified function similarity criteria for excitation.

Parameters characterising mechanical properties of the considered problem may be
classified in the following way:

– elastic properties: elastic supports rigidity

(11.12) (ks) = (kx, kz, kε)

– damping properties: body and fluid viscous damping coefficients

(11.13) (µs) = (µx, µz, µε) ;
(
µ f

)
=

(
µx f , µz f , µε f

)
– inertia properties: body and fluid masses and mass inertia moments

(11.14) (ms) = (m,m, I) ;
(
m f

)
=

(
mx f ,mz f , I f

)
– excitation characteristics: excitation amplitudes

(11.15) (Fos) = (Fox, Foz, Mo)

– body characteristic dimensions

(11.16) (Ds) = (D, B, L) ; Ωs

where: D, B – body cross-sectional dimensions; L – body length; Ωs – body volume,
– body and fluid mass densities

(11.17) (ρ) =
(
ρs, ρ f

)
while:

(11.18) ρsΩs = m

– body characteristic velocity

(11.19) Vs = Vz

In our further considerations we shall determine the ratios between components of relevant
forces and moments of forces with reference to one of the component forces so that they
become dimensionless quantities. The dimensionless numbers related to them will be dynamic
similarity numbers adequate for the analysed problem. We shall adopt the vertical component
of the body inertia force and the added fluid mass as the reference force, i.e.:

(11.20) FizΣ = Fiz + Fiz f

However, as the dimensional base, we shall adopt a three-item set: (mΣ,Vz, B), where:

(11.21) mΣ = m + mz f

We shall then obtain the following relationships:
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– Characteristic numbers related to the body and fluid inertia

FixΣ
izΣ =

FixΣ

FizΣ
, πixΣizΣ =

(
m + mx f

)
V2
z B−1(

m + mz f

)
V2
z B−1

=

1 +
mx f

m

1 +
mz f

m

(11.22)

FiεΣ
izΣ =

FiεΣ

FizΣ
=

Miε

BFizΣ
, πiεΣizΣ =

(
I + I f

)
V2
z B−2(

m + mz f

)
V2
z

=
IΣ

mzΣB2(11.23)

Let us introduce the following additional designations and dependencies:

mx f = ρ fΩs<x = m f <x(11.24)
mz f = ρ fΩs<z = m f <z(11.25)

I = mB2< = ρsΩsB2<(11.26)

I f = ρ fΩsB2<ε(11.27)

Then the characteristic numbers πixΣizΣ and πiεΣizΣ may also be expressed as:

πixΣizΣ =

1 +
ρ f

ρs
<x

1 + ρ f

ρs
<z

(11.28)

πiεΣizΣ =

(
<+ ρ f

ρs
<ε

)
(
1 +

ρ f

ρs
<z

)(11.29)

If we assume that the dimensionless quantity < may be calculated for a given body
geometry, while the dimensionless quantities: <x , <z , <ε may be estimated theoretically
or determined experimentally for selected body geometries, the only characteristic
number left here is the following number:

(11.30) πρ f s =
ρ f

ρs

– Characteristic numbers related to the solid body supports elasticity

Fkx
izΣ =

Fkx

FizΣ
, πkxizΣ =

kx · B(
m + mz f

)
V2
z B−1

(11.31)

Fkz
izΣ =

Fkz

FizΣ
, πkzizΣ =

kzB(
m + mz f

)
V2
z B−1

(11.32)

Fkε
izΣ =

Fkε

FizΣ
=

Mkε

BFizΣ
, πkεizΣ =

kε(
m + mz f

)
V2
z

(11.33)

Let us introduce further designations and dependencies:

kx
m + mx f

= ω2
x(11.34)
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kz
m + mz f

= ω2
z(11.35)

kε
I + I f

= ω2
ε(11.36)

where: ωx, ωz, ωε – so-called circular frequencies of translational and rotational normal
vibrations of the analysed system.
Additionally, let us express the characteristic velocity of a solid body Vz as:

(11.37) Vz = ωzB

Then, the last three characteristic numbers may be expressed as:

πkxizΣ =

(
ωx

ωz

)2 1 +
ρ f

ρs
<x

1 +
ρ f

ρs
<z

(11.38)

πkzizΣ = 1(11.39)

πkεizΣ =

(
ωε
ωz

)2

(
<+ ρ f

ρs
<ε

)
(
1 +

ρ f

ρs
<z

)(11.40)

As may be seen, the new characteristic numbers here are the following:

(11.41) πωxz =
ωx

ωz
; πωεz =

ωε
ωz

– Characteristic numbers related to viscous damping of the body and fluid

FµxΣ
izΣ =

FµxΣ
FizΣ

, πµxΣizΣ =

(
µx + µx f

)
Vz(

m + mz f

)
V2
z B−1

=
µxΣ

mzΣωz
=
µxΣ
mxΣ
·

mxΣ

mzΣ
·

1
ωz

(11.42)

FµzΣ
izΣ =

FµzΣ
FizΣ

, πµzΣizΣ =

(
µz + µz f

)
Vz(

m + mz f

)
V2
z B−1

=
µzΣ
mzΣ
·

1
ωz

(11.43)

FµεΣ
izΣ =

FµεΣ
FizΣ

, πµεΣizΣ =

(
µε + µε f

)
VzB−1

B
(
m + mz f

)
V2
z B−1

=
µεΣ
mzΣ
·

1
B2ωz

=

=
µεΣ
IΣ
·

IΣ
mzΣ
·

1
B2ωz

(11.44)

Let us introduce further designations and dependencies:
µxΣ
mxΣ

= 2γxωx(11.45)

µzΣ
mzΣ
= 2γzωz(11.46)

µεΣ
IΣ
= 2γεωε(11.47)
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The characteristic numbers (11.42), (11.43) and (11.44) will then adopt the follow-
ing form:

π
µxΣ
izΣ = 2γx

(
ωx

ωz

) (
1 + ρ f

ρs
<x

)(
1 + ρ f

ρs
<z

)(11.48)

π
µzΣ
izΣ = 2γz(11.49)

π
µεΣ
izΣ = 2γε

(
ωε
ωz

) (
<+ ρ f

ρs
<ε

)(
1 + ρ f

ρs
<z

)(11.50)

Dimensionless damping coefficients: γx , γz , γε are called critical damping ratios and
they characterise the damping ratio (amplitude decrease) of damped translational and
rotational normal vibrations of the system under consideration.

– Characteristic numbers related to excitation amplitudes

Fox
izΣ =

Fox

FizΣ
, πoxizΣ =

Fox(
m + mz f

)
V2
z B−1

=
Fox

kzB
=

Fox

kxB
·

kx
kz
=
ξst
B
·

kx
kz

(11.51)

Foz
izΣ =

Foz

FizΣ
, πozizΣ =

Foz(
m + mz f

)
V2
z B−1

=
Foz

kzB
=
ζst
B

(11.52)

Foε
izΣ =

Mo

BFizΣ
, πoεizΣ =

Mo

B
(
m + mz f

)
V2
z B−1

=

=
Mo

kzB2 =
Mo

kε
·

kε
kzB2 = εst ·

kε
kzB2

(11.53)

where: ξst, ζst, εst – static translational displacements and rotation angle from the
amplitudes of relevant excitations.

11.2. The case of induced vibrations of a body in a fluid moving at
velocity Vf

Additional relevant ratios of aerodynamic / hydrodynamic forces and moment of force to
inertia forces and moment of force as well as the similarity numbers resulting therefrom will
then be as follows:

F∆psxizΣ =
F∆psx
FizΣ

, π∆psxizΣ =
ρ fV2

f B2Cx(
m + mz f

)
V2
z B−1

=
ρ fV2

f B

kz
· Cx(11.54)

F∆pszizΣ =
F∆psz
FizΣ

, π∆pszizΣ =
ρ fV2

f B2Cy(
m + mz f

)
V2
z B−1

=
ρ fV2

f B

kz
· Cy(11.55)

F∆psεizΣ =
M∆psε
BFizΣ

, π∆psεizΣ =
ρ fV2

f B3Cm

B
(
m + mz f

)
V2
z B−1

=
ρ fV2

f B

kz
· Cm(11.56)
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As we see, another characteristic number ρV2
f B/kz has appeared here, alongside aerody-

namic coefficients Cx , Cy , Cm, which may also be expressed in a different way, namely:

(11.57)
ρ fV2

f B

kz
=

ρ fV2
f B

mΣ f 2
z 4π2

=
ρ f D2

mΣ
L

·
B
L
·

(
Vf

fzD

)2
·

1
4π2 = Mρ · λB · (Vr )

2 ·
1

4π2

where the newly obtained characteristic numbers have been named and defined in the follow-
ing way:

– dimensionless mass parameter

(11.58) Mρ =
ρ f D2

mΣ
L

=
ρ f D2

m∗
Σ

where: m∗
Σ
=

mΣ
L

– summary mass density per body length unit
– body slenderness

(11.59) λB =
B
L

– reduced velocity

(11.60) Vr =
Vf

fzD
=

1
fzD
Vf

=
1

Stk

where: Stk – the kinematic Strouhal number.

11.3. Dynamic response of a system and the related characteristic
numbers

The dynamic response of the considered system are two translational displacements ξ and
ζ and the rotation (torsion) angle ε. They are dependent on time t and on the set of all the
dimensionless parameters of the system and its excitation, which could be e.g. the characteristic
numbers discussed above. Designating the sets of these parameters as

(
X̌
)
,
(
Ž
)
and

(
Ě
)
,

respectively, similarity relations for the system response are represented by the following
dimensionless function dependencies:

(11.61) ξ̌ =
ξ

B
= ξ

(
ť;

(
X̌
))

; ζ̌ =
ζ

B
= ζ̌

(
ť;

(
Ž
))

; ε = ε̌ = ε̌
(
ť;

(
Ě
))

These relations enable transferring the test results of the considered system model response
and its excitation provided that at least the most important characteristic numbers discussed
above have been satisfied.
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12. Criteria of periodical phenomena similarity – Strouhal
(synchronicity) number St

12.1. Vortex shedding and vortex excitation

Vortex shedding, as well as its related vortex excitation, of slender structural elements or
structures of longitudinal axis situated normal to flow, are more or less periodical phenomena.
Let us consider the relation of two global forces per length unit of a slender structure, namely:
the global amplitude of vortex excitation force Fv

os and the global force of the onflowing fluid
inertia Fif. Let the frequency of vortex shedding f v be the parameter of vortex excitation
translational force amplitude. Assuming that the remaining parameters remain the same as
previously, we obtain:

(12.1) Fvos
if =

Fv
os

Fif
, πvosif =

f vρ fVf D2
s

ρ fV2
f

Ds

=
f vDs

Vf
= Stv

Since the vortex shedding frequency and the configuration in which they follow the body
(the so-called vortex trail) depend on the shadowing effect /hydrodynamic trail left by the body,
and this in turn depends on Re number, it must in general be assumed that:

(12.2) St = St
(
Re;

(
Ǧ

))
Where the vortex shedding is of resonant character (i.e. f v = fy , where fy is the frequency

of the body normal translational oscillations), we may write:

(12.3) Vv
c =

fyDs

St

12.2. Rotating turbines, propellers, screw propellers etc.

Let us consider the relation of two global forces of fluid inertia per length unit of a rotating
blade of a rotor / propeller / screw propeller, i.e. circumferential force Fi f θ , lying on the
rotor surface, normal to the blade, and axial force Fi f x , parallel to the inflowing fluid stream
velocity Vf (or relative axial velocity of the fluid stream and the moving rotor). Let the blade
circumferential velocity Vθ be the inertia force parameter Fi f θ , while:

(12.4) Vθ = ωR = 2πnR

where: ω – rotation angular velocity; R – rotor radius, n – rotation frequency (i.e. the number of
rotations per time unit). Let us assume that the remaining parameters are the same as previously.
We will then have the following:

(12.5) Fi f θ
i f x
=

Fi f θ

Fi f x
, πi f θ

i f x
=

Vθ ρ fVf Ds

ρ fV2
f

Ds

=
Vθ
Vf
=
ωR
Vf
= 2π

nR
Vf

The characteristic numbers obtained here are called:
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– tip speed ratio

(12.6) Z =
ωR
Vf

– Strouhal (or synchronicity) number

(12.7) Stn =
nR
Vf

In propeller or screw propeller model tests, it is assumed that the characteristic dimension
is the circumscribed circle diameter D. If so, then Stn =

nD
Vf

, although it is more customary to

use the reverse of this number:
1

Stn
= λ, called the propeller or screw propeller advance. For

screw propellers λ = 0.03 ÷ 3, and for propellers λ = 0.1 ÷ 2.

13. Summarizing conclusions

At the end of this paper, the following summarizing conclusions can be drawn:
1. The similarity laws enable carrying out experiments with a convenient fluid, such as

water or air, for example, and then applying the results to a fluid which is less convenient
to work with, such as gas, steam, or oil.

2. In both hydraulics and aeronautics, valuable results can be obtained at a minimum cost
by tests made with small-scale models of the full-size apparatus. The laws of similitude
make it possible to determine the performance of the prototype, i.e. the full-size device,
from tests made with the model. It is not necessary to use the same fluid for the model
and the prototype. Neither must the model necessarily be smaller than the prototype.
Thus the flow of water at the entrance to a small centrifugal-pump runner might be
investigated by the flow of air at the entrance to a large model of the runner. It should be
emphasized that the model need not necessarily be different in size from the prototype.
In fact, it may be the same device, the variables in this case being the velocity and the
physical properties of the fluid.

3. A few other examples where models may be used are: ships in towing basins, airplanes
in wind tunnels, hydraulic turbines, centrifugal pumps, spillways of dams, river channels,
and the study of such phenomena as the action of waves and tides on beaches, soil
erosion, and the transportation of sediment.

4. In the use of models, it is essential that the fluid velocity should not be too low, as it may
not produce laminar flow where in the prototype the flow is turbulent. Additionally, the
conditions in the model should not be such that would make surface tension important if
such conditions do not exist in the prototype. For example, the depth of water flowing
over the crest of a model spillway should not be too low.
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Praktyczne problemy kryteriów podobieństwa dynamicznego
w zagadnieniach interakcji płyn–ciało stałe przy różnych ich ruchach

względnych

Słowa kluczowe: kryteria podobieństwa dynamicznego, interakcja płyn–ciało stałe, ruchy względne
płyn–ciało stałe

Streszczenie:

Praca dotyczy kryteriów podobieństwa dynamicznego różnych zjawisk zachodzących w hydraulice
i dynamice płynów, oryginalnie wyprowadzonych ze stosunków siłi momentów siłwpływających na
te zjawiska. Podstawą formułowania i rozważań dotyczących kryteriów podobieństwa dynamicznego
jest metoda i procedura Andrzeja Flagi dotycząca wyznaczania kryteriów podobieństwa dynamicznego
w różnych zagadnieniach interakcji płyn-ciało stałe, tj. przy różnych względnych ruchach płynu i
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ciała stałego. Praca dotyczy wyznaczania i analizy kryteriów podobieństwa i analizy różnych praktycznych
problemów spotykanych głównie w hydraulice i mechanice płynów przy ustalonym bezturbulencyjnym
napływie płynu przed ciałem stałym. Ponadto przedstawiono przypadki drgań ciała stałego wymuszonych
mechanicznie przy stacjonarnym ruchu płynu ze stałą prędkością przed ciałem stałym. Przyjmując
autorską metodę i procedurę wyznaczania kryteriów podobieństwa dynamicznego, w pracy przedstawiono
i analizowano zarówno znane liczby kryterialne otrzymane na innej drodze (np. z analizy wymiarowej
czy równań różniczkowych danego zagadnienia – jak liczby: Reynoldsa, Froude’a, Eulera, Cauchy’ego,
Strouhala, Macha) – ale także wiele nowych liczb kryterialnych występujących w róznych zagadnieniach
interakcji płyn – ciało stałe (np. nowe współczynniki siłi momentów aerodynamicznych występujących
w zagadnieniach drgań ciałstałych w płynach).
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